Ticket to Tomorrow

Now Arriving at Penn Station, an Era of High-Tech Building

Form is especially influenced by the way architects and engineers collaborate: artistic vision can be immediately transported into— or modified by— scientific reality. Skidmore has teamed up with Ove Arup, the engineering firm that created the Sydney Opera House. Ove Arup developed GSA (General Structural Analysis), a program that can import and analyze any AutoCad file and calculate how a structure will endure gravity, wind, age, or even a seismic trauma. "Our programs can simulate that in nanoseconds," says Gregory Hodkinson, the project's lead design engineer.

Skidmore's elaborate designs for Penn Station also call for a set of programs that analyze the movement and behavior of the internal environment. Ove Arup developed a complicated heating and cooling system using a CFD program (Computational Fluid Dynamics), which launches thousands of simultaneous equations to predict the behavior of air in a certain space. The engineers examined how air in the ticketing hall will be affected by sun and traffic currents. The most advanced tool they're using, which has been especially critical to the shell design, is a program that traces rays of light based on the position of the glass panels, and can simulate the pattern and intensity of natural light in any condition.

The information-technology backbone for Penn Station has been the hardest thing for the PSRC team to decide on, because tech systems become outdated every two years at least. They've opted for a flexible fiber-optic backbone that will support a variety of applications. "The main thing is to maximize the capacity of the infrastructure, and nothing beats fiber optics at this point," says Hodkinson. "But then wireless might be the next wave."

"We are at the edge of history, and you must push," said Senator Moynihan of the new Penn Station plans.
Pixel By Pixel
"We are at the edge of history, and you must push," said Senator Moynihan of the new Penn Station plans.

The current Penn Station accommodates more traffic daily— 500,000 people— than New York's three airports combined. The new plans increase passenger capacity by 30 percent and double passenger circulation space in the complex. The plans also include a terminus for the new airport-access systems to Newark and Kennedy, and services such as airline ticket counters and flight information. "The ideal is for these systems to become transparent, so instead of having to stand in line, you get your bar code over your home computer, swipe it, and get on the train," says John Gerber, vice president of PSRC.

What surely won't be transparent is the new Penn Station media wall, an information and video monitor of religious proportions. Forty feet high and 240 feet long, the wall will be one of the biggest aggregations of flat-screen TV monitors in the world, offering schedules, stock tickers, a weather map, entertainment, advertising, and rotating artwork. Sound and subtitling are still in the research stages.

The station will augur a new generation of high-speed, interurban rail travel in the United States. Because tracks between Boston and Washington have so many sharp curves, Amtrak won't be able to rival Japan's bullet train and France's TGV (currently the world's fastest train at 186 mph, and soon to reach 210 mph) any time soon. But for the moment, Amtrak has developed a hybrid technology called a "tilt train" that will be able to take sharp turns at up to 155 mph without passengers' feeling the speed.

Most of these info-tech and infrastructure innovations are in the works, but before construction begins the PSRC developers have some considerable hurdles to surmount: nailing down the outstanding funds ($74 million), finalizing leases, completing all the regulatory approvals, and hiring a contractor). But nobody questions whether this civic monument will be built. The PSRC plan has become irresistible millennial propaganda.

« Previous Page