Stopping the Next Plague

Hunting for viruses with Columbia's Simon Anthony

At the time, foot-and-mouth disease was at its height, leading to the deaths of millions of cattle in Great Britain. Enjoying lab tests to find evidence of viruses, he joined the effort to study it. Later, he earned a doctorate in molecular virology at Oxford, where he began using time in the lab to tap dance and waltz—remnants of his days as a young operatic baritone. He took a fellowship at the San Diego Zoo to focus on wildlife disease before being hired by Columbia. Although he works closely with Lipkin, Anthony has free rein to do what he pleases. "I'm working on the next level of pathogen discovery," the young scientist says.

Their shotgun approach to finding viruses has its share of deep-pocketed supporters as well as critics, who point to the failure to head off a public health catastrophe, much less find "the next HIV."

"What have they found? Not much," says Robert B. Tesh, a respected senior virologist at the University of Texas Medical Branch who is not involved in PREDICT. "In my opinion, it's a lot of hype."

Christopher Farber
More than 500 novel viruses have been discovered in Columbia University’s labs. The lab receives samples—about 10,000 annually—of blood, tissue, and feces that arrive by mail every three months.
Christopher Farber
More than 500 novel viruses have been discovered in Columbia University’s labs. The lab receives samples—about 10,000 annually—of blood, tissue, and feces that arrive by mail every three months.

Anthony didn't bristle at that swipe by a fellow scientist. Although the aim is to prevent the next great pandemic, he points out that there's a lot of less dramatic groundwork that has to come first.

"Our aim is to gather information about the different viruses that exist in wildlife, and this is no small challenge," he says. "We are at the beginning of a long road here."

He adds: "This project is not designed to avert global pandemics in two years, or even five years. This is a long-term initiative, and over that long term, we will gather much more information about viruses that exist and implement the ability for countries all over the world to respond as they occur. The goal was never to do it within two years, because that's impossible."

Anthony adds that while critics exist, PREDICT has garnered partnerships from major research institutions, Columbia and University of California, Davis, among them, as well as 20 nations that have signed on. PREDICT scientists help labs in those countries improve pathogen discovery, at times building labs from the ground up. "That's a huge contribution to public health," he says.

"The other thing you have to bear in mind is how do you measure whether we've averted a health crisis? We have the unfortunate situation where if we are successful in setting out to do what we want to do, we'll never know it. . . . But we can measure the number of viruses we have found, our knowledge of global viral diversity, and the labs we've set up around the world."

Anthony walks to one of the lab's massive freezers to retrieve some gorilla throat swabs, the samples he'd put off to look at monkey serum. He pulls the door open, and mist pours out. Inside, dozens of shoebox-size containers hold tubes scribbled with letters.

He dons an insulated glove, brushes frost from a box, and slides it out. The swabs, like mini Q-tips, were taken from Rwanda gorillas that might have contracted something from humans; the virus travel works both ways. (This happened in 2009 when gorillas in a Rwandan national park died of a human respiratory infection, theorized to have jumped from ecotourists.)

Anthony wants to know what viruses are on the swabs, both gorilla and human. But because the samples have not yet been lysed—a process that renders pathogens incapable of infecting—there is a chance he could inhale a virus. The job must be done in "the BL3," as he calls it, a special lab named for its next-to-highest biosafety level.

Behind a door marked "Biohazard," he pulls a protective suit over his skinny jeans and slides a respirator over his hair. Looking like an extra in a Contagion sequel, he extracts liquid from the vials holding the swabs. Then he spins it in a centrifuge to separate bacteria and gorilla cells, which form dense pellets.

With a needle, he removes the liquid while making sure not to suck up the pellets. Next, he injects it into yet another vial, this time inserting a fine filter with holes large enough for virus particles, but not cells. Again, he spins the tubes in a centrifuge to push the liquid through the filter, hopefully leaving a "fairly pure" sample: a few drops containing only viral DNA.

Standing by the centrifuge, there is nothing to do but wait. Moments like that are when he waltzed while earning his doctorate. And he might do a few steps in the BL3, too, but it is nearing the end of a long day, during which he has zipped up the stairs between the lab's floors many times. His stubbly face looks weary through the helmet, slightly crooked on his head. Inside the respirator mask, a tiny lightbulb (indicating that the electric filter is on) gives his face a blue cast. When he speaks, his voice sounds like he's talking into a bucket. "I spend half my life writing on tubes and waiting by centrifuges," he says.

« Previous Page
Next Page »
New York Concert Tickets